\n\u5bfc\u8bfb<\/td>\n | \u6211\u662f\u4e00\u540d\u6323\u624e\u5728\u7f16\u7a0b\u94fe\u5e95\u7aef\u7684pythoner\uff0c\u5de5\u4f5c\u4e2d\u65e2\u8981\u548c\u6570\u636e\u6253\u4ea4\u9053\uff0c\u4e5f\u8981\u4fdd\u6301\u548cerp\u7cfb\u7edf\uff0cweb\u7f51\u7ad9\u53cb\u597d\u7684\"\u6c9f\u901a\"\u00b7\u00b7\u00b7\uff0c\u6211\u4f1a\u65f6\u4e0d\u65f6\u7684\u5206\u4eab\u4e0b\u5de5\u4f5c\u4e2d\u9047\u5230\u90a3\u70b9\u4e8b\uff0c\u5305\u62ec\u4e2a\u4eba\u89c9\u5f97\u503c\u5f97\u8bb0\u5f55\u7684\u7f16\u7a0b\u5c0f\u6280\u5de7\uff0c\u8fd8\u6709\u5c31\u662f\u9047\u5230\u7684\u95ee\u9898\u4ee5\u53ca\u89e3\u51b3\u65b9\u6848\uff0c\u8fd8\u6709\u6e90\u7801\u7684\u9605\u8bfb\u7b49\u7b49\uff0c\u53ef\u80fd\u4e5f\u6709\u7f16\u7a0b\u4e2d\u7684\u751f\u6d3b\u611f\u609f\uff0c\u4e0d\u8bf4\u4e86\uff0c\u6211\u8981\u53bb\u91cd\u6784\u6211\u7684\u7a0b\u5e8f\u4e86<\/strong><\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n \u672c\u6587\u57fa\u4e8epython, \u4f7f\u7528pandas, pymysql\u7b49\u4e09\u65b9\u5e93\u5b9e\u73b0\u4e86\u5411\u6570\u636e\u5e93\u4e2d\u9ad8\u6548\u6279\u91cf\u63d2\u5165\u6570\u636e\uff0c\u4e00\u65b9\u9762\u63d0\u4f9b\u88ab\u7f51\u4e0a\u5f88\u591a\u778e\u8f6c\u8f7d\u7684\u7b54\u6848\u7ed9\u5751\u8499\u4e86\u7684\u4eba(\u56e0\u4e3a\u6211\u4e5f\u662f)\uff0c\u4e00\u65b9\u9762\u81ea\u5df1\u4e5f\u505a\u4e2a\u7b14\u8bb0\uff0c\u4ee5\u540e\u65b9\u4fbf\u67e5\u9605.<\/p>\n \u9700\u6c42\u539f\u56e0<\/strong><\/div>\n\u6700\u8fd1\u5728\u5904\u7406\u4e00\u4e2a\u9700\u6c42\uff0c\u6709\u5173\u6279\u91cf\u5f80\u6570\u636e\u5e93\u63d2\u5165\u6570\u636e\u7684\uff0c\u63cf\u8ff0\u5982\u4e0b<\/p>\n \n\u539f\u6765\u7684\u7a0b\u5e8f\u662f\u57fa\u4e8esql\u7684\u5b58\u50a8\u8fc7\u7a0b\u8fdb\u884c\u6570\u636e\u7684\u66f4\u65b0\u4fee\u6539\u64cd\u4f5c\uff0c\u7531\u4e8e\u6570\u636e\u91cf\u8f83\u5927\uff0c\u5bfc\u81f4\u5bf9\u6570\u636e\u5e93\u538b\u529b\u592a\u5927\uff0c\u4e8e\u662f\u9700\u8981\u5c06\u7a0b\u5e8f\u91cd\u6784\u4e3a\u7528python\u8bfb\u53d6\u6587\u4ef6\u7684\u65b9\u5f0f\u5c06\u6570\u636e\u505a\u8ba1\u7b97\u5904\u7406\uff0c\u51cf\u5c11\u8fd9\u90e8\u5206\u7684\u538b\u529b\uff0c\u6700\u540e\u4ec5\u4ec5\u5c06\u8ba1\u7b97\u7684\u7ed3\u679c\u8c03\u7528aws\u7684lambda\u670d\u52a1\u91cd\u65b0\u66f4\u65b0\u5230\u6570\u636e\u5e93\u4e2d\u5c31\u53ef\u4ee5\u4e86\uff0c\u51cf\u5c11\u4e86\u6781\u5927\u7684\u538b\u529b\uff0c\u4e5f\u964d\u4f4e\u4e86\u6210\u672c\u3002\u6d89\u53ca\u6570\u636e\u5e93\u4e3b\u8981\u662f\u63d2\u5165\u53ca\u66f4\u65b0\u64cd\u4f5c<\/ul>\n\u7248\u672c\u5e93\u4fe1\u606f<\/strong><\/div>\n\u57fa\u4e8elinux\u7cfb\u7edf\u5199\u7684<\/ul>\n\u4e09\u65b9\u5e93 >>> pandas 1.0.5, pymysql 0.9.3<\/ul>\npython\u7248\u672c >>> 3.7<\/ul>\n\u6807\u51c6\u5e93 >> os<\/ul>\n\u903b\u8f91\u68b3\u7406<\/strong><\/div>\n\u5b9e\u9645\u4e0a\uff0c\u6700\u540e\u4e00\u6b65\uff0c\u8981\u5199\u5165\u6570\u636e\u5e93\u7684\u6587\u4ef6\u6570\u636e\u662f\u5b58\u50a8\u5728\u5185\u5b58\u4e2d\u7684\u3002\u56e0\u4e3a\u8bfb\u53d6\u6587\u4ef6\u540e\u8fdb\u884c\u7684\u8ba1\u7b97\u90fd\u662f\u5728\u5185\u5b58\u4e2d\u8fdb\u884c\u7684\uff0c\u90a3\u4e48\u8ba1\u7b97\u7684\u7ed3\u679c\u4e5f\u6ca1\u5fc5\u8981\u518d\u5199\u5230\u672c\u5730\uff0c\u518d\u53bb\u8bfb\u53d6\uff0c\u518d\u5199\u5165\u6570\u636e\u5e93,\u8fd9\u662f\u4f1a\u5f71\u54cd\u7a0b\u5e8f\u7684\u6548\u7387\u7684\u3002\u903b\u8f91\u5982\u4e0b<\/p>\n \u8bfb\u53d6\u6587\u4ef6<\/ul>\n\u6587\u4ef6\u7684\u62fc\u63a5\u53ca\u8ba1\u7b97\uff0c\u751f\u6210\u65b0\u7684df<\/ul>\n\u521d\u59cb\u5316\u6570\u636e\u5e93\u7684\u8fde\u63a5<\/ul>\n\u5c06df\u6240\u9700\u6570\u636e\u8f6c\u6362\u4e3a\u5143\u7ec4\u6570\u636e(\u53d6\u51b3\u4e8e\u6570\u636e\u5e93\u7684\u4e09\u65b9\u5e93\u7684\u63a5\u53e3\u662f\u5982\u4f55\u652f\u6301\u6279\u91cf\u64cd\u4f5c\u7684)<\/ul>\n\u5c06\u6570\u636e\u5199\u5165\u6570\u636e\u5e93<\/ul>\n\u68c0\u67e5\u6570\u636e\u5e93\u5185\u5bb9\u5373\u53ef<\/ul>\n\u5206\u6b65\u5b9e\u73b0\u53ca\u5206\u6790<\/strong><\/div>\n\u8bfb\u53d6\u6587\u4ef6<\/strong><\/span><\/div>\n\u7ed9\u6587\u4ef6\u8def\u5f84\uff0c\u7136\u540e\u53bb\u8bfb\u6587\u4ef6\u5c31\u884c\u4e86\uff0c\u5f3a\u8c03\u4e00\u4e0b\u9700\u8981\u6ce8\u610f\u7684\u70b9<\/p>\n \u7edd\u5bf9\u8def\u5f84: \u8fd9\u79cd\u6700\u7b80\u5355\uff0c\u76f4\u63a5\u7ed9\u8def\u5f84\u5b57\u7b26\u4e32\u5c31\u884c\u4e86\uff0c\u4f46\u662f\u4e00\u65e6\u6587\u4ef6\u5939\u76ee\u5f55\u7ed3\u6784\u53d8\u5316\uff0c\u5c31\u9700\u8981\u9891\u7e41\u7684\u6539<\/ul>\n\u76f8\u5bf9\u8def\u5f84: \u6211\u4e00\u822c\u559c\u6b22\u5148\u5728\u811a\u672c\u4e2d\u5b9a\u4f4d\u5f53\u524d\u811a\u672c\u7684\u4f4d\u7f6e\uff0c\u7136\u540e\u901a\u8fc7\u76f8\u5bf9\u8def\u5f84\u53bb\u627e\uff0c\u8fd9\u6837\u53ea\u8981\u4f60\u6574\u4e2a\u5305\u5185\u90e8\u7684\u76ee\u5f55\u7ed3\u6784\u4e0d\u53d8\u5316\uff0c\u90fd\u4e0d\u7528\u6539\uff0c\u5c31\u7b97\u90e8\u7f72\u4e0a\u7ebf\u4e5f\u662f\u76f4\u63a5\u6839\u636e\u5305\u7684\u4f4d\u7f6e\u6765\uff0c\u5f88\u65b9\u4fbf<\/ul>\npandas\u9ed8\u8ba4\u4f1a\u5c06\u6240\u6709\u6570\u5b57\u8bfb\u53d6\u4e3afloat\u7c7b\u578b\uff0c\u6240\u4ee5\u5bf9\u4e8e\u90a3\u79cd\u770b\u8d77\u6765\u662f\u6570\u5b57\uff0c\u4f46\u5b9e\u9645\u4e0a\u662f\u9700\u8981\u5f53\u4f5c\u5b57\u7b26\u4e32\u4f7f\u7528\u7684\u5b57\u6bb5\u8fdb\u884c\u7c7b\u578b\u7684\u8f6c\u6362<\/ul>\n \r\nimport pandas as pd \r\nimport numpy as np \r\n \r\n# \u5f53\u524d\u811a\u672c\u7684\u4f4d\u7f6e \r\ncurrent_folder_path = os.path.dirname(__file__) \r\n \r\n# \u4f60\u7684\u6587\u4ef6\u7684\u4f4d\u7f6e \r\nyour_file_path1 = os.path.join(current_folder_path, \"\u6587\u4ef6\u7684\u540d\u5b571\") \r\nyour_file_path2 = os.path.join(current_folder_path, \"\u6587\u4ef6\u7684\u540d\u5b572\") \r\n \r\n# \u6211\u8fd9\u91cc\u662f\u4ee5\u8bfb\u53d6csv\u6587\u4ef6\u4e3a\u4f8b, delimiter\u4e3a\u6211\u4eec\u5185\u90e8\u7ea6\u5b9a\u7684\u5217\u4e4b\u95f4\u7684\u5206\u5272\u7b26 \r\ndf1 = pd.read_csv(your_file_path1, dtype={\"column1\": str, \"column2\": str}, delimiter=\"\/t\") \r\ndf2 = pd.read_csv(your_file_path2, dtype={\"column1\": str, \"column2\": str}, delimiter=\"\/t\") \r\n<\/pre>\n\u6587\u4ef6\u7684\u62fc\u63a5\u53ca\u8ba1\u7b97<\/strong><\/span><\/div>\n\u6587\u4ef6\u7684\u62fc\u63a5\u4e3b\u8981\u5c31\u662fmerge\u548cconcat\u4e24\u4e2a\u8bed\u6cd5\u7684\u4f7f\u7528\uff0c\u5f3a\u8c03\u4e00\u4e0b\u5c0f\u77e5\u8bc6\u70b9<\/p>\n merge\u8bed\u6cd5\u4e3b\u8981\u662f\u5bf9\u5e94\u4e8esql\u8bed\u8a00\u7684\u5185\u8fde\u63a5\uff0c\u5916\u8fde\u63a5\uff0c\u5de6\u8fde\u63a5\u548c\u53f3\u8fde\u63a5\u7b49<\/ul>\nconcat\u4e3b\u8981\u662f\u7528\u6765\u5c06\u76f8\u540c\u7ed3\u6784\u7684df\u5355\u7eaf\u7684\u62fc\u63a5\u8d77\u6765(\u4e5f\u5c31\u662f\u5217\u8868\u7684\u603b\u884c\u6570\u589e\u52a0)<\/ul>\n # \u8fd9\u91cc\u4ee5\u5de6\u8fde\u63a5\u4e3e\u4f8b, \u5047\u8bbe\u53ea\u6709\u4e24\u4e2a\u6587\u4ef6\u62fc\u63a5 \r\nret_df = pd.merge(df1, df2, left_on=[\"column_name\"], right_on=[\"column_name\"], how=\"left\") <\/pre>\n\u521d\u59cb\u5316\u8fde\u63a5<\/strong><\/span><\/div>\n\u5bfc\u5165\u4e09\u65b9\u5e93pymysql\uff0c\u521d\u59cb\u5316\u8fde\u63a5<\/p>\n # pymysql\u7684\u63a5\u53e3\u83b7\u53d6\u94fe\u63a5 \r\ndef mysql_conn(host, user, password, db, port=3306, charset=\"utf8\"): \r\n # \u4f20\u53c2\u7248\u672c \r\n conn = pymysql.connect(host=host, user=user, password=password, database=db, port=port, charset=charset) \r\n return conn <\/pre>\n\u5bf9\u5e94\u63a5\u53e3\u8f6c\u6362\u6570\u636e<\/strong><\/span><\/div>\n1.\u6570\u636e\u63d2\u5165\u8981\u8003\u8651\u5199\u5165\u4e00\u4e2a\u4e8b\u52a1\uff0c\u56e0\u4e3a\u5931\u8d25\u7684\u8bdd\uff0c\u8981\u4fdd\u8bc1\u5bf9\u6570\u636e\u5e93\u6ca1\u6709\u5f71\u54cd \n2.\u6784\u9020\u7b26\u5408\u5bf9\u5e94\u63a5\u53e3\u7684\u6570\u636e\u683c\u5f0f\uff0c\u901a\u8fc7\u67e5\u8be2\uff0cpymysql\u6709\u4e24\u79cd\u53ef\u4ee5\u6267\u884c\u8bed\u53e5\u7684\u63a5\u53e3<\/p>\n \r\n# \u5148\u521b\u5efacursor\u8d1f\u8d23\u64cd\u4f5cconn\u63a5\u53e3 \r\nconn = mysql_conn(\"your db host\", \"your username\", \"your password\", \"db name\") \r\ncursor = conn.cursor() \r\n# \u5f00\u542f\u4e8b\u52a1 \r\nconn.begin() \r\n \r\n############# \u6784\u9020\u6279\u91cf\u6570\u636e\u7684\u8fc7\u7a0b ############# \r\n \r\n# \u5148\u6784\u9020\u9700\u8981\u7684\u6216\u662f\u548c\u6570\u636e\u5e93\u76f8\u5339\u914d\u7684\u5217 \r\ncolumns = list(df.columns) \r\n# \u53ef\u4ee5\u5220\u9664\u4e0d\u8981\u7684\u5217\u6216\u8005\u6570\u636e\u5e93\u6ca1\u6709\u7684\u5217\u540d \r\ncolumns.remove(\"\u5217\u540d\") \r\n# \u91cd\u65b0\u6784\u9020df,\u7528\u4e0a\u9762\u7684columns,\u5230\u8fd9\u91cc\u4f60\u8981\u4fdd\u8bc1\u4f60\u6240\u6709\u5217\u90fd\u8981\u51c6\u5907\u5f80\u6570\u636e\u5e93\u5199\u5165\u4e86 \r\nnew_df = df[columns].copy() \r\n \r\n# \u6784\u9020\u7b26\u5408sql\u8bed\u53e5\u7684\u5217\uff0c\u56e0\u4e3asql\u8bed\u53e5\u662f\u5e26\u6709\u9017\u53f7\u5206\u9694\u7684,(\u8fd9\u4e2a\u5bf9\u5e94\u4e0a\u9762\u7684sql\u8bed\u53e5\u7684(column1, column2, column3)) \r\ncolumns = ','.join(list(new_df.columns)) \r\n \r\n# \u6784\u9020\u6bcf\u4e2a\u5217\u5bf9\u5e94\u7684\u6570\u636e\uff0c\u5bf9\u5e94\u4e8e\u4e0a\u9762\u7684((value1, value2, value3)) \r\ndata_list = [tuple(i) for i in gdsord_df.values] # \u6bcf\u4e2a\u5143\u7ec4\u90fd\u662f\u4e00\u6761\u6570\u636e\uff0c\u6839\u636edf\u884c\u6570\u751f\u6210\u591a\u5c11\u5143\u7ec4\u6570\u636e \r\n \r\n# \u8ba1\u7b97\u4e00\u884c\u6709\u591a\u5c11value\u503c\u9700\u8981\u7528\u5b57\u7b26\u4e32\u5360\u4f4d \r\ns_count = len(data_list[0]) * \"%s,\" \r\n \r\n# \u6784\u9020sql\u8bed\u53e5 \r\ninsert_sql = \"insert into \" + \"\u6570\u636e\u5e93\u8868\u540d\" + \" (\" + columns + \") values (\" + s_count[:-1] + \")\" \r\n<\/pre>\n\u5c06\u6570\u636e\u5199\u5165\u6570\u636e\u5e93<\/strong><\/span><\/div>\n\u8fd9\u4e2a\u7b80\u5355\uff0c\u76f4\u63a5\u4e0a\u4ee3\u7801<\/p>\n \r\ncursor.executemany(insert_sql, data_list) \r\nconn.commit() \r\ncursor.close() \r\nconn.close() \r\n<\/pre>\n\u68c0\u67e5\u6570\u636e\u5e93\u662f\u5426\u63d2\u5165\u6210\u529f<\/strong><\/span><\/div>\n\u5982\u679c\u6ca1\u95ee\u9898\u7684\u8bdd\uff0c\u5c31\u53ef\u4ee5\u540c\u65f6\u8fdb\u884c\u591a\u4e2a\u6587\u4ef6\u8bfb\u5199\uff0c\u8ba1\u7b97\uff0c\u6700\u540e\u542f\u7528\u591a\u7ebf\u7a0b\u540c\u65f6\u5411\u6570\u636e\u5e93\u4e2d\u5199\u5165\u6570\u636e\u4e86\uff0c\u975e\u5e38\u9ad8\u6548!<\/p>\n \u5b8c\u6574\u4ee3\u7801<\/p>\n \r\nimport pandas as pd \r\nimport numpy as np \r\n\r\n# pymysql\u63a5\u53e3 \r\ndef mysql_conn(host, user, password, db, port=3306, charset=\"utf8\"): \r\n conn = pymysql.connect(host=host, user=user, password=password, database=db, port=port, charset=charset) \r\n return conn \r\n \r\n \r\n# \u5f53\u524d\u811a\u672c\u7684\u4f4d\u7f6e \r\ncurrent_folder_path = os.path.dirname(__file__) \r\n \r\n# \u4f60\u7684\u6587\u4ef6\u7684\u4f4d\u7f6e \r\nyour_file_path1 = os.path.join(current_folder_path, \"\u6587\u4ef6\u7684\u540d\u5b571\") \r\nyour_file_path2 = os.path.join(current_folder_path, \"\u6587\u4ef6\u7684\u540d\u5b572\") \r\n \r\n# \u6211\u8fd9\u91cc\u662f\u4ee5\u8bfb\u53d6csv\u6587\u4ef6\u4e3a\u4f8b, delimiter\u4e3a\u6211\u4eec\u5185\u90e8\u7ea6\u5b9a\u7684\u5217\u4e4b\u95f4\u7684\u5206\u5272\u7b26 \r\ndf1 = pd.read_csv(your_file_path1, dtype={\"column1\": str, \"column2\": str}, delimiter=\"\/t\") \r\ndf2 = pd.read_csv(your_file_path2, dtype={\"column1\": str, \"column2\": str}, delimiter=\"\/t\") \r\n# \u5408\u5e76 \r\nret_df = pd.merge(df1, df2, left_on=[\"column_name\"], right_on=[\"column_name\"], how=\"left\") \r\n \r\n# \u5148\u521b\u5efacursor\u8d1f\u8d23\u64cd\u4f5cconn\u63a5\u53e3 \r\nconn = mysql_conn(\"your db host\", \"your username\", \"your password\", \"db name\") \r\ncursor = conn.cursor() \r\n# \u5f00\u542f\u4e8b\u52a1 \r\nconn.begin() \r\n \r\n# \u5148\u6784\u9020\u9700\u8981\u7684\u6216\u662f\u548c\u6570\u636e\u5e93\u76f8\u5339\u914d\u7684\u5217 \r\ncolumns = list(df.columns) \r\n# \u53ef\u4ee5\u5220\u9664\u4e0d\u8981\u7684\u5217\u6216\u8005\u6570\u636e\u5e93\u6ca1\u6709\u7684\u5217\u540d \r\ncolumns.remove(\"\u5217\u540d\") \r\n# \u91cd\u65b0\u6784\u9020df,\u7528\u4e0a\u9762\u7684columns,\u5230\u8fd9\u91cc\u4f60\u8981\u4fdd\u8bc1\u4f60\u6240\u6709\u5217\u90fd\u8981\u51c6\u5907\u5f80\u6570\u636e\u5e93\u5199\u5165\u4e86 \r\nnew_df = df[columns].copy() \r\n \r\n# \u6784\u9020\u7b26\u5408sql\u8bed\u53e5\u7684\u5217\uff0c\u56e0\u4e3asql\u8bed\u53e5\u662f\u5e26\u6709\u9017\u53f7\u5206\u9694\u7684,(\u8fd9\u4e2a\u5bf9\u5e94\u4e0a\u9762\u7684sql\u8bed\u53e5\u7684(column1, column2, column3)) \r\ncolumns = ','.join(list(new_df.columns)) \r\n \r\n# \u6784\u9020\u6bcf\u4e2a\u5217\u5bf9\u5e94\u7684\u6570\u636e\uff0c\u5bf9\u5e94\u4e8e\u4e0a\u9762\u7684((value1, value2, value3)) \r\ndata_list = [tuple(i) for i in gdsord_df.values] # \u6bcf\u4e2a\u5143\u7ec4\u90fd\u662f\u4e00\u6761\u6570\u636e\uff0c\u6839\u636edf\u884c\u6570\u751f\u6210\u591a\u5c11\u5143\u7ec4\u6570\u636e \r\n \r\n# \u8ba1\u7b97\u4e00\u884c\u6709\u591a\u5c11value\u503c\u9700\u8981\u7528\u5b57\u7b26\u4e32\u5360\u4f4d \r\ns_count = len(data_list[0]) * \"%s,\" \r\n \r\n# \u6784\u9020sql\u8bed\u53e5 \r\ninsert_sql = \"insert into \" + \"\u6570\u636e\u5e93\u8868\u540d\" + \" (\" + columns + \") values (\" + s_count[:-1] + \")\" \r\ntry: \r\n cursor.executemany(insert_sql, data_list) \r\n conn.commit() \r\n cursor.close() \r\n conn.close() \r\nexcept Exception as e: \r\n # \u4e07\u4e00\u5931\u8d25\u4e86\uff0c\u8981\u8fdb\u884c\u56de\u6eda\u64cd\u4f5c \r\n conn.rollback() \r\n cursor.close() \r\n conn.close() \r\n<\/pre>\n","protected":false},"excerpt":{"rendered":"\u672c\u6587\u57fa\u4e8epython, \u4f7f\u7528pandas, pymysql\u7b49\u4e09\u65b9\u5e93\u5b9e\u73b0\u4e86\u5411\u6570\u636e\u5e93\u4e2d\u9ad8\u6548\u6279\u91cf\u63d2\u5165\u6570\u636e\uff0c\u4e00\u65b9\u9762\u63d0\u4f9b […]<\/p>\n","protected":false},"author":1920,"featured_media":198972,"comment_status":"closed","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"_acf_changed":false,"footnotes":""},"categories":[55],"tags":[],"class_list":["post-198971","post","type-post","status-publish","format-standard","has-post-thumbnail","hentry","category-thread"],"acf":[],"_links":{"self":[{"href":"https:\/\/lrxjmw.cn\/wp-json\/wp\/v2\/posts\/198971","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/lrxjmw.cn\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/lrxjmw.cn\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/lrxjmw.cn\/wp-json\/wp\/v2\/users\/1920"}],"replies":[{"embeddable":true,"href":"https:\/\/lrxjmw.cn\/wp-json\/wp\/v2\/comments?post=198971"}],"version-history":[{"count":9,"href":"https:\/\/lrxjmw.cn\/wp-json\/wp\/v2\/posts\/198971\/revisions"}],"predecessor-version":[{"id":199079,"href":"https:\/\/lrxjmw.cn\/wp-json\/wp\/v2\/posts\/198971\/revisions\/199079"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/lrxjmw.cn\/wp-json\/wp\/v2\/media\/198972"}],"wp:attachment":[{"href":"https:\/\/lrxjmw.cn\/wp-json\/wp\/v2\/media?parent=198971"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/lrxjmw.cn\/wp-json\/wp\/v2\/categories?post=198971"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/lrxjmw.cn\/wp-json\/wp\/v2\/tags?post=198971"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}} |