集成学习方法是一类先进的机器学习方法,这类方法训练多个学习器并将它们结合起来解决一个问题,在实践中获得了巨大成功。
《集成学习:基础与算法》分为三部分。第一部分主要介绍集成学习的背景知识;第二部分主要介绍集成学习方法的核心知识,包括Boosting、Bagging、Random Forests 等经典算法,平均、投票和Stacking 等模型和方法、相关理论分析工作,以及多样性度量和增强方面的进展;第三部分介绍集成学习方法的进阶议题,包括集成修剪、聚类集成和集成学习方法在半监督学习、主动学习、代价敏感学习、类别不平衡学习及提升可理解性方面的进展。此外,《集成学习:基础与算法》还在每章的“拓展阅读”部分提供了相关的进阶内容。
根据中华人民共和国国家版权局相关法规,本站不提供该PDF电子版书籍
您可以进入交流社群中继续寻找资料或购买正版书籍
技术交流社群://lrxjmw.cn/club
Linux书籍在线阅读://lrxjmw.cn/chapter-00.html
本文原创地址://lrxjmw.cn/integrated-learning.html编辑:王婷,审核员:逄增宝